The classification of industrial sand-ores by image recognition methods

نویسندگان

  • Giuseppe Bonifazi
  • Paolo Massacci
  • Luciano Nieddu
  • Giacomo Patrizi
چکیده

The chemical and physical composition of the feldsparquartz sand-ore differ from location to location in a given open pit mine mine and the utilisation of the raw-ore, as well as its resale value will depend on these properties. Thus. a very important aspect of the operation is to determine quickly and accurately the properties of the sand at a given location. Laboratory methods are accurate but take time to execute, while relying on the experience of the mine foreman is often eclectic and may lead to unsatisfactory results. The aim of this paper is to formulate a pattern recognition algorithm to classify, with a very low probability of error, samples of sand-ore of given classes. Such classification should be fast and on-line. so that the sand grabber can use the information automatically.. The algorithm presented operates in two stages. In the first stage of operation. classification has been accurate over 92%, while after the refinement stage, precision has reached on average 96%. With so few objects misclassified, part of the remaining imprecision may be due to uncertainties in the classification ascribed, as it will be shown below. Details are given on how to implement this algorithm on-line, to guide the actual production process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Constrained Clustering Algorithm for the Classification of Industrial Ores

In this paper a Pattern Recognition algorithm based on a constrained version of the k-means clustering algorithm will be presented. The proposed algorithm is a non parametric supervised statistical pattern recognition algorithm, i.e. it works under very mild assumptions on the dataset. The performance of the algorithm will be tested, togheter with a feature extraction technique that captures th...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996